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• Esophageal adenocarcinoma (EAC): 5-year survival rate is < 20%

• Patients with precursor (dysplasia) are periodically screened with 

endoscopic biopsy
• Gold standard: biopsies evaluated with 2D conventional histology 

which represents < 1% of specimens, leading to sampling errors

• OTLS microscopy enables detection of EAC and dysplasia

• Esophageal biopsies stained with fluorescent analog of H&E

and optically cleared

• Imaged in 3D with OTLS, false-colored to create conventional
H&E-like appearance for pathologists

• OTLS microscopy + AI-based triage guides pathologist evaluation in 3D

pathology datasets

• Our method improves diagnostic sensitivity and reduces
pathologist workloads compared to conventional histology

Open-top light-sheet microscopy for 3D pathology
• We have developed open-top light-sheet (OTLS) microscopy for 

comprehensive imaging of clinical specimens in 3D

• Pathologists may evaluate whole biopsies in 3D to make diagnosis

Goal: 3D pathology with AI-assisted triage
• Unfortunately, 3D pathology datasets can be very large à manual

review is tedious for pathologists

• Goal: streamline 3D pathology evaluation by implementing

AI-assisted triage

• We use a deep learning model to identify suspicious regions of

interest in 3D OTLS datasets of esophageal biopsies
• A machine classifier evaluates deep learning predictions and

identifies the most important 2D images in whole biopsy
• Pathologists are given top 3 images for diagnosis (reduced workload

compared to conventional histology, ~15 images)
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Fig. 1 Conventional histology suffers from sampling limitations due to sparse slide-based 
representation of clinical specimens

Fig. 2 Tissue processing steps for OTLS imaging (top). CAD diagram of OTLS microscope (bottom).

Fig. 4 Diagnostic workflow with 3D pathology and AI-assisted triage.

• Performance benchmarked against 

pathologist annotations

• Algorithm identifies neoplasia with 

high sensitivity (> 90%) and 

moderate specificity (~ 70%)
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Fig. 3 OTLS microscopy images (en face view) of an esophageal biopsy exhibiting high-grade 
dysplasia and esophageal adenocarcinoma
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Fig. 5 ROC curve for (a) patch-based predictions
across all cross-validation folds. (b) Principal
component analysis of all patch-based predictions
shows that neoplastic predictions are well-separated
from benign predictions. (c) ROC curve for image-
based predictions over all cross-validation folds.

CONCLUSIONS

Fig. 6 Example predictions: probability heatmap of predicted suspicious regions (dysplasia or EAC) with
ground truth annotations outlined in black for two example cases (top). Examples of correct predictions are
shown, i.e. true positives (TP, red) and true negatives (TN, blue).
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• We compared our AI-assisted 3D pathology method to conventional

histology in an independent clinical validation cohort (n = 20)

• Our method diagnostically upgraded 3 out of 20 cases à improved

diagnostic sensitivity in comparison to conventional histology


